Computing arithmetic Kleinian groups

نویسنده

  • Aurel Page
چکیده

Arithmetic Kleinian groups are arithmetic lattices in PSL2(C). We present an algorithm that, given such a group Γ, returns a fundamental domain and a finite presentation for Γ with a computable isomorphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finiteness of arithmetic Kleinian reflection groups

We prove that there are only finitely many arithmetic Kleinian maximal reflection groups. Mathematics Subject Classification (2000). Primary 30F40; Secondary 57M.

متن کامل

On fields of definition of arithmetic Kleinian reflection groups

We show that degrees of the real fields of definition of arithmetic Kleinian reflection groups are bounded by 35.

متن کامل

Jørgensen Number and Arithmeticity

The Jørgensen number of a rank-two non-elementary Kleinian group Γ is J(Γ) = inf{|trX − 4|+ |tr[X,Y ]− 2| : 〈X,Y 〉 = Γ}. Jørgensen’s Inequality guarantees J(Γ) ≥ 1, and Γ is a Jørgensen group if J(Γ) = 1. This paper shows that the only torsion-free Jørgensen group is the figure-eight knot group, identifies all non-cocompact arithmetic Jørgensen groups, and establishes a characterization of coco...

متن کامل

Existence and Non-Existence of Torsion in Maximal Arithmetic Fuchsian Groups

In [1], Borel discussed discrete arithmetic groups arising from quaternion algebras over number fields with particular reference to arithmetic Kleinian and arithmetic Fuchsian groups. In these cases, he described, in each commensurability class, a class of groups which contains all maximal groups. Developing results on embedding commutative orders of the defining number field into maximal or Ei...

متن کامل

Invariant Trace-fields and Quaternion Algebras of Polyhedral Groups

Let P be a polyhedron in H$ of finite volume such that the group Γ(P) generated by reflections in the faces of P is a discrete subgroup of IsomH$. Let Γ+(P) denote the subgroup of index 2 consisting entirely of orientation-preserving isometries so that Γ+(P) is a Kleinian group of finite covolume. Γ+(P) is called a polyhedral group. As discussed in [12] and [13] for example (see §2 below), asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015